Сверление рассверливание зенкерование и развертывание отверстий

Сверление

Чтобы обрабатывать отверстия, их необходимо предварительно получить, для чего можно использовать различные технологии. Наиболее распространенной из таких технологий является сверление, выполняемое с использованием режущего инструмента, который называется сверлом.

При помощи сверл, устанавливаемых в специальных приспособлениях или оборудовании, в сплошном материале можно получать как сквозные, так и глухие отверстия. В зависимости от используемых приспособлений и оборудования сверление может быть:

  • ручным, выполняемым посредством механических сверлильных устройств или электро- и пневмодрелей;
  • станочным, осуществляемым на специализированном сверлильном оборудовании.

Использование ручных сверлильных устройств является целесообразным в тех случаях, когда отверстия, диаметр которых не превышает 12 мм, необходимо получить в заготовках из материалов небольшой и средней твердости. К таким материалам, в частности, относятся:

  • конструкционные стали;
  • цветные металлы и сплавы;
  • сплавы из полимерных материалов.

Если в обрабатываемой детали необходимо выполнить отверстие большего диаметра, а также добиться высокой производительности данного процесса, лучше всего использовать специальные сверлильные станки, которые могут быть настольными и стационарными. Последние в свою очередь подразделяются на вертикально- и радиально-сверлильные.

Рассверливание – тип сверлильной операции – выполняется для того, чтобы увеличить диаметр отверстия, сделанного в обрабатываемой детали ранее. Рассверливание также выполняется при помощи сверл, диаметр которых соответствует требуемым характеристикам готового отверстия.

Такой способ обработки отверстий нежелательно применять для тех из них, которые были созданы методом литья или посредством пластической деформации материала. Связано это с тем, что участки их внутренней поверхности характеризуются различной твердостью, что является причиной неравномерного распределения нагрузок на ось сверла и, соответственно, приводит к его смещению. Формирование слоя окалины на внутренней поверхности отверстия, созданного с помощью литья, а также концентрация внутренних напряжений в структуре детали, изготовленной методом ковки или штамповки, может стать причиной того, что при рассверливании таких заготовок сверло не только сместится с требуемой траектории, но и сломается.

При выполнении сверления и рассверливания можно получить поверхности, шероховатость которых будет доходить до показателя Rz 80, при этом точность параметров формируемого отверстия будет соответствовать десятому квалитету.

Зенкерование

При помощи зенкерования, выполняемого с использованием специального режущего инструмента, решаются следующие задачи, связанные с обработкой отверстий, полученных методом литья, штамповки, ковки или посредством других технологических операций:

  • приведение формы и геометрических параметров имеющегося отверстия в соответствие с требуемыми значениями;
  • повышение точности параметров предварительно просверленного отверстия вплоть до восьмого квалитета;
  • обработка цилиндрических отверстий для уменьшения степени шероховатости их внутренней поверхности, которая при использовании такой технологической операции может доходить до значения Ra 1,25.

При зенкеровании прикладывается меньшая сила реза, чем при сверлении, и отверстие получается более точное по форме и размерам

Если такой обработке необходимо подвергнуть отверстие небольшого диаметра, то ее можно выполнить на настольных сверлильных станках. Зенкерование отверстий большого диаметра, а также обработка глубоких отверстий выполняются на стационарном оборудовании, устанавливаемом на специальном фундаменте.

Ручное сверлильное оборудование для зенкерования не используется, так как его технические характеристики не позволяют обеспечить требуемую точность и шероховатость поверхности обрабатываемого отверстия. Разновидностями зенкерования являются такие технологические операции, как цекование и зенкование, при выполнении которых используются различные инструменты для обработки отверстий.

Специалисты дают следующие рекомендации для тех, кто планирует выполнить зенкерование.

  • Зенкерование следует проводить в процессе той же установки детали на станке, при которой осуществлялось сверление отверстия, при этом из параметров обработки меняется только тип используемого инструмента.
  • В тех случаях, когда зенкерованию подвергается необработанное отверстие в деталях корпусного типа, необходимо контролировать надежность их фиксации на рабочем столе станка.
  • Выбирая величину припуска на зенкерование, надо ориентироваться на специальные таблицы.
  • Режимы, на которых выполняется зенкерование, должны быть такими же, как и при осуществлении сверления.
  • При зенкеровании должны соблюдаться те же правила охраны труда и техники безопасности, как и при сверлении на слесарно-сверлильном оборудовании.

Зенкование и цекование

При выполнении зенкования используется специальный инструмент – зенковка. При этом обработке подвергается только верхняя часть отверстия. Применяют такую технологическую операцию в тех случаях, когда в данной части отверстия необходимо сформировать углубление для головок крепежных элементов или просто снять с нее фаску.

Чем различаются зенкование и цекование

При выполнении зенкования также придерживаются определенных правил.

  • Выполняют такую операцию только после того, как отверстие в детали будет полностью просверлено.
  • Сверление и зенкование выполняются за одну установку детали на станке.
  • Для зенкования устанавливают небольшие обороты шпинделя (не больше 100 оборотов в минуту) и применяют ручную подачу инструмента.
  • В тех случаях, когда зенкование осуществляется цилиндрическим инструментом, диаметр цапфы которого больше диаметра обрабатываемого отверстия, работу выполняют в следующей последовательности: сначала сверлится отверстие, диаметр которого равен диаметру цапфы, выполняется зенкование, затем основное отверстие рассверливается на заданный размер.

Целью такого вида обработки, как цекование, является зачистка поверхностей детали, которые будут соприкасаться с гайками, головками болтов, шайбами и стопорными кольцами. Выполняется данная операция также на станках и при помощи цековки, для установки которой на оборудование применяются оправки.

Обработка отверстий: виды операций и используемый инструмент

Обработка отверстий – это целый ряд технологических операций, целью которых является доведение геометрических параметров, а также степени шероховатости внутренней поверхности предварительно выполненных отверстий до требуемых значений. Отверстия, которые обрабатываются при помощи таких технологических операций, могут быть предварительно получены в сплошном материале не только при помощи сверления, но также методом литья, продавливания и другими способами.

Обработка высверленного отверстия цилиндрическим зенкером

Конкретный способ и инструмент для обработки отверстий выбираются в соответствии с характеристиками необходимого результата. Различают три способа обработки отверстий – сверление, развертывание и зенкерование. В свою очередь эти методы подразделяются на дополнительные технологические операции, к которым относятся рассверливание, цекование и зенкование.

Чтобы понять особенности каждого из вышеперечисленных способов, стоит рассмотреть их подробнее.

Развертывание

Процедуре развертывания подвергаются отверстия, которые предварительно были получены в детали при помощи сверления. Обработанный с использованием такой технологической операции элемент может иметь точность, степень которой доходит до шестого квалитета, а также невысокую шероховатость – до Ra 0,63. Развертки делятся на черновые и чистовые, также они могут быть ручными или машинными.

Цилиндрические ручные развертки 24Н8 0150

Рекомендации, которых следует придерживаться при выполнении данного вида обработки, заключаются в следующем.

  • Припуски в диаметре обрабатываемого отверстия выбираются по специальным таблицам.
  • При использовании ручного инструмента, который вращают только по часовой стрелке, сначала выполняют черновое, а потом чистовое развертывание.
  • Обработку стальных деталей выполняют с обязательным использованием СОЖ, чугунных – всухую.
  • Машинное развертывание проводят сразу после сверления на станке – с одной установки детали.
  • Для контроля качества результата используют специальные калибры.

Сверление рассверливание зенкерование и развертывание отверстий

Операционные припуски на обработку отверстий. Припуском на обработку деталей именуется слой металла, подлежащий снятию при обработке.

Размер припуска на обработку отверстий должен быть мини­мальным, но достаточным для получения правильной геометриче­ской формы, данных размеров и шероховатости отверстия при наименьшем количестве нужного инструмента и числе про­ходов. Таким макаром, наивыгоднейший припуск на обработку от­верстий обеспечивает соблюдение технических критерий вместе с высочайшей производительностью и экономичностью обработки.

Малый размер припуска на обработку отверстий зави­сит от жесткости системы станок — инструмент — деталь и, глав­ным образом, жесткости оправок и борштанг, от вида используемого инструмента, типа отверстий и их расположения, нрава вы­полняемой операции, размеров отверстий и корпуса.

Нужное число проходов при обработке отверстий уменьша­ется с увеличением жесткости оправок и борштанг, при наличии многорезцового инструмента, симметричном расположении припус­ка, уменьшении длины отверстия и вылета шпинделя.

Твердость оправок и борштанг в свою очередь увеличивается с применением опоры в задней стойке либо люнетов.

Величины главных и операционных припусков при обработке отверстий на горизонтально-расточных станках многолезвийными инструментами в критериях мелкосерийного производства приведе­ны в табл. 12.

Сверление применяется для образования отверстий в сплош­ном материале с точностью и шероховатостью до 4-го класса. Под­бор сверл по поперечнику при сверлении и рассверливании произво­дится по табл. 12. Нужная длина режущей части сверла зави­сит от требуемой глубины сверления и определяется по чертежу обрабатываемой детали. При сверлении глубочайших отверстий приме­няются удлиненные сверла.

Сверла устанавливают коническим хвостовиком в отверстие пе­реходной втулки либо удлинителя, а последние — в конус шпинделя станка. За ранее сопрягаемые конические поверхности про­тирают концами либо салфеткой. Сверла снимают с оправки либо удлинителя при помощи клина-выколотки. Нужно иметь в ви­ду, что все инструменты с коническим хвостовиком могут нормаль­но работать только при условии неплохого сопряжения конических поверхностей и отсутствия забоин. Для направления сверла сначала обработки используют подготовительную зацентровку отвер­стия маленьким сверлом поперечником до 30 мм.

Режимы резания при обработке на расточных станках инстру­ментами из быстрорежущей стали выбираются по нормативам НИБТН (книжка «Режимы резания металлов инструментами из быстрорежущей стали». Машгиз, 1950 [10]) и инструментами с пла­стинкой твердого сплава — по картам книжки «Режимы резания чер­ных металлов инвентарем, снаряженным жестким сплавом». Маш­гиз, 1958 [11].

Режим резания при сверлении и рассверливании выбирают в за­висимости от материала обрабатываемой детали, поперечника и гео­метрии заточки сверла, длины обрабатываемого отверстия и выле­та сверла. Подачи при сверлении определяют по картам 131 и 133 [10]. При всем этом верхние значения подач (I группа подач) прини­мают при сверлении глухих отверстий без допуска /либо по 5-му классу точности, следующем рассверливании, обработке двумя-тремя инструментами, обработке одним инвентарем и нарезании резьбы метчиками. Средние значения подач (II группа) использу­ют при сверлении глухих и сквозных отверстий в деталях недоста­точной жесткости, следующем нарезании резьбы метчиками, об­работке зенкером либо 2-мя развертками. Малые значения подач (III группа) используют для четких отверстий и последую­щей обработки одним зенкером либо одной разверткой. Скорость резания и числа оборотов сверл определяют по картам 132 и 135 [10].

Режим резания для сверл с пластинками твердого сплава при обработке чугуна и стали выбирают: подачи — по картам 81, 82 [11], скорость резания — по картам 83—86 [11]. Избранные величи­ны подач и частоту вращения корректируют по паспорту расточного станка — применяется наиблежайшее наименьшее значение подачи либо частоты вращения, имеющееся у станка.

Сверление, зенкерование и развертывание

Сверление. это процесс получения резанием глухих и сквоз-

ных цилиндрических отверстий в сплошном материале, осуществляемый на сверлильных и токарных станках. Если диаметр отверстия, которое требуется получить в процессе обработки, 30 мм, то для его изготовления используют два сверла. Первое, для сверления. а второе, для рассверливания.

Сверление (рассверливание) – это черновая обработка отверстий, в процессе которой обеспечивается точность в пределах 12…14 квалитетов и шероховатость мкм.

В нашей стране принята единая градация диаметров сверл, регламентируемая ГОСТ 885-77 и охватывающая практически все размеры отверстий до 80 мм, встречающиеся в деталях машин и приборов.

Выпускаются следующие разновидности сверл: спиральные, перовые, одностороннего резания (пушечные), кольцевые и комбинированные [11, 13].

Наибольшее распространение при обработке отверстий глубиной до (5…10) d получили спиральные, или винтовые сверла. Конструкция спирального сверла с коническим хвостовиком приведена на рис. 40.

Рис. 40. Конструкция спирального сверла с коническим хвостовиком

Спиральное сверло состоит из рабочей части и хвостовика. На рабочей части, в свою очередь, можно выделить режущую часть и направляющую часть. Для выбивания сверл с коническим хвостовиком из отверстия шпинделя предусмотрена лапка.

Между рабочей частью и коническим хвостовиком сверла довольно

часто имеется переходная часть сверла в виде шейки.

Спиральные сверла могут иметь цилиндрический хвостовик (при диаметре мм) или конический хвостовик (при мм).

Урок 12 Сверление, зенкование, развёртывание отверстий

Дата добавления: 2016-12-16 ; просмотров: 2743 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

«Сверление, зенкование, зенкерование и развертывание отверстий»

В работе слесаря по изготовлению, ремонту или сборке деталей механизмов и машин часто возникает необходимость получения в этих деталях самых различных отверстий. Для этого производят операции сверления, зенкования, зенкерования и развертывания отверстий.

READ  Сверление Под 90 Градусов Приспособление

Сущность данных операций заключается в том, что процесс резания (снятия слоя материала) осуществляется вращательным и поступательным движениями режущего инструмента (сверла, зенкера и т. д.) относительно своей оси. Эти движения создаются с помощью ручных (коловорот, дрель) или механизированных (электрическая дрель) приспособлений, а также станков (сверлильных, токарных и т.д.).

Сверление — это один из видов получения и обработки отверстий резанием с помощью специального инструмента — сверла.

Как и любой другой режущий инструмент, сверло работает по принципу клина. По конструкции и назначению сверла делятся на перовые, спиральные, центровочные и др. В современном производстве применяются преимущественно спиральные сверла и реже специальные виды сверл.

На направляющей части расположены 2 винтовые канавки, по которым отводится стружка в процессе сверления. Направление винтовых канавок обычно правое. Левые сверла применяются очень редко. Узкие полосочки на цилиндрической части сверла называются ленточками. Они служат для уменьшения трения сверла о стенки отверстия (сверла диаметром 0,25–0,5 мм выполняются без ленточек).

Режущую частьсверла образуют 2 кромки, расположенные под определенным углом друг к другу (угол при вершине). Величина угла зависит от свойств обрабатываемого материала. Для стали и чугуна средней твердости он составляет 116–118°.

Хвостовикслужит для закрепления сверла в шпинделе станка или сверлильном патроне и может быть конической или цилиндрической формы. Конический хвостовик имеет на конце лапку, которая служит упором при выталкивании сверла из гнезда.

Шейкасверла соединяет рабочую часть и хвостовик и служит для выхода абразивного круга в процессе шлифования сверла при его изготовлении. На шейке обычно проставляется марка сверла.

Изготавливаются сверла преимущественно из быстрорежущей стали или твердых спеченных сплавов марок ВК6, ВК8 и Т15К6. Из таких сплавов делается только рабочая (режущая) часть инструмента.

В процессе работы режущая кромка сверла притупляется, поэтому сверла периодически затачивают.

Сверлами производят не только сверление глухих (засверливание) и сквозных отверстий, т.е. получение этих отверстий в сплошном материале, но и рассверливание — увеличение размера (диаметра) уже полученных отверстий. Перовые сверла являются наиболее простыми по конструкции. Они применяются при обработке твердых поковок, а также ступенчатых и фасонных отверстий.

Особую группу сверл составляют центровочные сверла, предназначенные для обработки центровых отверстий. Они бывают простые, комбинированные, комбинированные с предохранительным конусом. Простые спиральные сверла отличаются от обычных спиральных сверл только меньшей длиной их рабочей части, так как ими производится сверление отверстий небольшой длины. Они применяются при обработке высокопрочных материалов, в то время как комбинированные сверла часто ломаются.

Зенкованием называется обработка верхней части отверстий в целях получения фасок ил цилиндрических углублений, например, под потайную головку винта или заклепки.

Выполняется зенкование с помощью зенковок или сверлом большего диаметра;

Зенкерование — это обработка отверстий, полученных; литьем, штамповкой или сверлением, для придания им цилиндрической формы, повышения точности и качества поверхности. Зенкерование выполняется специальными инструментами— зенкерами.

Зенкеры могут быть с режущими кромками на цилиндрической или конической поверхности (цилиндрические и конические зенкеры), а также с режущими кромками, расположенными на торце (торцовые зенкеры). Для обеспечения целостности обрабатываемого отверстия и зенкера на торце зенкера иногда делают гладкую цилиндрическую направляющую часть.

Зенкерование может быть процессом окончательной обработки или подготовительным к развертыванию. В последнем случае при зенкеровании оставляют припуск на дальнейшую обработку.

Развертывание — это чистовая обработка отверстий. По своей сущности она подобна зенкерованию, но обеспечивает более высокую точность и малую шероховатость обработки поверхности отверстий.

Инструмент для развертывания отверстий – развертка. Ручные развертки на своей хвостовой части имеют квадратный конец для вращениия их с помощью воротка. На машинных развертках хвостовик конусный.

Для обработки конических отверстий используют комплект конических разверток из трех штук: черновой (обдирочной), промежуточной и чистовой. Гладкие цилиндрические отверстия обрабатывают развертками с прямыми канавками. Если же в отверстии имеется шпоночный паз, то для его развертывания применяют инструменты со спиральными канавками.

При работе на сверлильных станках применяют различные приспособления для закрепления заготовок и режущего инструмента.

Машинные тиски — приспособление для закрепления заготовок разного профиля. Они могут иметь сменные губки для зажима деталей сложной формы.

Призмы служат для закрепления цилиндрических заготовок.

В сверлильных патронах закрепляют режущие инструменты с цилиндрическими хвостовиками.

С помощью переходных втулок устанавливают режущие инструменты, у которых размер конуса хвостовика меньше размера конуса шпинделя станка.

На сверлильных станках могут выполняться все основные операции по получению и обработке отверстий сверлением, зенкованием, зенкерованием и развертыванием.

Вертикально-сверлильные станки применяются для сверления отверстий диаметром до 75 мм. Они могут обеспечивать операции рассверливания, зенкерования, развертывания и нарезания резьбы.

Настольно-сверлильные станки используются для сверления в мелких деталях отверстий диаметром до 12 мм.

Техника безопасности при сверлении металла:

СВЕРЛЕНИЕ, РАССВЕРЛИВАНИЕ, ЗЕНКЕРОВАНИЕ, РАЗВЕРТЫВАНИЕ И РАСТАЧИВАНИЕ

ОСОБЕННОСТИ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ

Сверление применяют для обработки глухих и сквозных отверстий цилиндрических, конических и многогранных внутренних поверхностей.

собственно сверление (получение отверстий в сплошном материале);

рассверливание (увеличение диаметра ранее просверленного, отлитого, пробитого при штамповке, прошитого, полученного методами электрофизической или электрохимической обработки отверстия).

Сверление и рассверливание обеспечивают точность обработки отверстий по 10. 11-му квалитетам и качество поверхности Rz 80. 20 мкм (при обработке отверстий малого диаметра в цветных металлах и сплавах до Ra 2,5 мкм). Для получения более точных отверстий применяют зенкерование и развертывание.

Зенкерование, как и рассверливание, применяют для увеличения диаметра ранее полученного цилиндрического отверстия, а также для получения конических (коническими зенкерами) и плоских (торцами зенкеров при обработке ступенечатых отверстий) поверхностей. При зенкеровании после сверления получают точность по 9. 10-му квалитетам, качество поверхности до Ra 2,5 мкм.

Развертывание применяют для окончательной (чистовой) обработки в основном цилиндрических отверстий, реже. для чистовой обработки конических и торцовых поверхностей. Точность по 6. 8-му квалитетам, качество поверхности Ra 2,50. 0,32 мкм.

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ РЕЖУЩЕЙ ЧАСТИ СВЕРЛ, ЗЕНКЕРОВ И РАЗВЕРТОК

Элементы режущей части наиболее распространенного спирального сверла показаны на рис. 1 а, б.

У спирального сверла два зуба, каждый из которых имеет свою вершину, главную и вспомогательную режущие кромки, свою переднюю поверхность, главную и вспомогательную задние поверхности. У сверла есть также поперечная режущая кромка (перемычка), которая позволяет сверлу обрабатывать отверстия в сплошном материале.

Геометрию спирального сверла определяют следующие углы заточки.

Передний угол в рассматриваемой точке х главной режущей кромки измеряют в плоскости I-I, нормальной к главной режущей кромке, между касательной к передней поверхности в рассматриваемой точке х и нормалью к поверхности, образованной вращением главной режущей кромки вокруг оси сверла.

Задний угол измеряют в плоскости, касательной к соосному со сверлом цилиндру, на поверхности которого лежит рассматриваемая точка х главной режущей кромки, между касательной к задней поверхности в точке х режущей кромки и касательной в той же точке к окружности ее вращения вокруг оси сверла. У наружной поверхности угол gх наибольший, а угол — наименьший.

Угол при вершине сверла 2j измеряют между главными режущими кромками. Угол 2j назначают в зависимости от обрабатываемого материала: для обработки стали, твердой бронзы 2j = 116. 118°, для обработки цветных металлов и их сплавов средней твердости 2j = 130. 140°.

Зенкерование и развертывание

1 — главная режущая кромка; 2 — главная задняя поверхность; 3 — вершина зуба; 4 — вспомогательная задняя поверхность [ленточка]; 5 — вспомогательная режущая кромка; 6 — канавка; 7 — спинка зуба; 8 — передняя поверхность; 9 — перемычка (у сверла); 10 — направляющая часть (у развертки); L, lраб, , , , , , . lo.к — длина соответственно инструмента, его рабочей части, шейки, хвостовика, режущей части, калибрующей части, лапки цилиндрического участка и участка с обратной конусностью; Dr — главное движение; d — диаметр сверла; (j, j1 — главный и вспомогательный углы в плане; gх, aх — передний и задний углы в точке х; a0 — задний угол перемычки в точке О; w — угол наклона зуба; y — угол наклона перемычки; АВ — перемычка; — задний угол на ленточке; q — диаметр спинок зубьев

Угол наклона поперечной режущей кромки y измеряют между проекциями поперечной и главной режущих кромок на плоскость, перпендикулярную оси сверла.

Угол наклона винтовой канавки w измеряют по наружному диаметру. С ростом угла со увеличивают передний угол gХ1 при этом облегчается процесс резания и улучшается выход стружки. Рекомендуемые геометрические параметры сверла приведены в справочной литературе.

Вспомогательный угол в плане jх создается обратной конусностью на рабочей части сверла в пределах 0,03. 0,12 мм на 100 мм длины. Задние поверхности сверл затачивают по конической поверхности, по плоскости и по винтовой поверхности.

Элементы режущей части зенкеров и разверток показаны на рис. 1.1, в — е. Рабочая часть у зенкеров состоит из режущей части и калибрующей части — с обратной конусностью. Режущая часть наклонена к оси под углом в плане j и выполняет основную работу резания.

Спиральный зенкер имеет 3. 4 зуба, практически с такой же геометрией, как у зубьев спирального сверла.

Рабочая часть у разверток состоит из направляющего конуса длиной , режущей части длиной IP и калибрующей части длиной . Калибрующая часть у разверток состоит из двух участков: цилиндрического длиной и конического длиной 70 к с обратной конусностью. Обратную конусность делают для уменьшения трения инструмента об обработанную поверхность и уменьшения величины разбивки отверстия.

Развертка имеет 6. 12 зубьев. Углы g, aк и w у разверток обычно равны нулю.

Сверла, зенкеры и развертки изготавливают из инструментальной и быстрорежущей сталей, твердых сплавов ВК6, ВК8, ВК3М, ВК6М, ВК8В. Твердосплавные сверла широко применяют при обработке отверстий в жаропрочных и нержавеющих сталях и сплавах, титане и его сплавах, термореактивных пластмассах.

ЭЛЕМЕНТЫ РЕЖИМА РЕЗАНИЯ И СРЕЗАЕМОГО СЛОЯ

Главное движение при сверлении, рассверливании, зенкеровании и развертывании — вращательное Dr, а движение подачи — поступательное Ds. Схемы резания при сверлении, рассверливании, зенкеровании и развертывании показаны на рис. 2. Скорость резания, м/мин или м/с, на периферии инструмента

или

где D — диаметр обработанной поверхности, мм; n — частота вращения инструмента, об/мин.

а — сверление; б — рассверливание; в — зенкерование; г — развертывание; 1 — заготовка; 2 — сверло; 3 — зенкер; 4 — развертка; D, D0 — диаметры обработанной и обрабатываемой поверхностей; Dr — главное движение; Ds — движение подачи; а, и b.толщина и длина срезаемого слоя; s — подача на один оборот; sz.подача на зуб; t — глубина резания; j — главный угол в плане

Подача s — величина перемещения инструмента вдоль оси за один оборот. Подача sz, приходящаяся на один зуб инструмента, sz = s/z (z — число зубьев инструмента).

Толщину а срезаемого слоя измеряют в направлении, перпендикулярном к главной режущей кромке инструмента, а ширину b срезаемого слоя — вдоль этой режущей кромки.

При сверлении под глубиной резания t подразумевают расстояние от обработанной поверхности до оси сверла (t = D/2), а при рассверливании, зенкеровании и развертывании — расстояние от обработанной до обрабатываемой поверхности: t = (D. D0)/2.

При сверлении осевую силу Р0 (силу подачи, Н), подсчитывают по формуле

Крутящий момент Мкр, Нм, резания при сверлении

При рассверливании, зенкеровании и развертывании на инструмент действует осевая сила (обычно незначительной величины) и крутящий момент Мкр, Нм, резания

где СР и См — постоянные коэффициенты, характеризующие обрабатываемый материал и условия его обработки; zP, уР, zM, хм, ум— показатели степеней; D мм, t, мм, и s, мм/об, — соответственно диаметр обрабатываемой поверхности, глубина резания, и подача; кР и км — общие поправочные коэффициенты, учитывающие конкретные условия обработки. Эффективная мощность, кВт, резания

где Мкр — крутящий момент резания, Нм; n — частота вращения инструмента или изделия, об/мин.

При сверлении скорость резания, м/мин или м/с,

При рассверливании, зенкеровании и развертывании

где Cv — постоянный коэффициент, характеризующий обрабатываемый материал и конкретные условия обработки; zv, xv, yv — показатели степеней; т — показатель относительной стойкости; kv — общий поправочный коэффициент, учитывающий конкретные условия обработки; Т — период стойкости.

READ  Как разрезать бумагу для букета

Сверлильно-расточная группа станков, вторая группа по классификации ЭНИМС, состоит из двух подгрупп: сверлильной и расточной. Сверлильные станки предназначены для работы сверлами, зенкерами, развертками, метчиками и т.п., а расточные, помимо этого, в основном предназначены для работы расточными инструментами различной конструкции. В зависимости от расположения шпинделя сверлильные станки подразделяют на вертикально- и горизонтально-сверлильные, а в зависимости от количества шпинделей — на одно- и многошпиндельные. Настоль-но-сверлильные станки выпускают для сверления отверстий диаметром до 16 мм; вертикально-сверлильные и радиально-сверлиль-ные — для сверления отверстий диаметром до 100 мм. Горизонтально-сверлильные станки предназначены для получения глубоких отверстий специальными сверлами.

РЕЖУЩИЙ ИНСТРУМЕНТ И ТЕХНОЛОГИЧЕСКАЯ ОСНАСТКА СВЕРЛИЛЬНЫХ СТАНКОВ

Отверстия на сверлильных станках обрабатывают сверлами, зенкерами, развертками и метчиками. Все эти инструменты — осевые. Обработка этими инструментами осуществляется при главном вращательном движении Dr инструмента или заготовки и при одном движении подачи Ds (чаще инструмента) вдоль оси инструмента или обрабатываемой поверхности.

При обработке осевыми инструментами возможны три кинематические схемы:

главное движение и движение подачи передают инструменту. Такую схему реализуют на сверлильных, координатно-расточных, агрегатно-сверлильных и агрегатно-расточных станках. При этой схеме имеет место увод оси инструмента, если эта ось не совпадает с направлением подачи заготовки или инструмента;

главное движение передают заготовке, а движение подачи — заготовке или инструменту. Используют на токарных, токарно-револьверных станках и токарных автоматах. Увод оси инструмента может иметь место в этом случае только из-за неодинаковости заточки зубьев инструмента;

вращательное движение сообщается и заготовке (v3, м/мин или м/с), и инструменту (vи м/мин или м/с). Главным движением Dr в этом случае будет то, скорость которого больше (обычно это скорость вращения инструмента vи).

Скорость резания (суммарная), м/мин или м/с, определяют по формуле v = v3 vи.

22-3 Зенкерование, цекование и развертывание цилиндрических отверстий.

Движение подачи сообщают либо инструменту, либо заготовке.

Такую схему применяют только для сверления на некоторых автоматах и специальных станках. Диаметральный размер получается более точным, чем при предыдущей схеме.

Сверла по конструкции и назначению подразделяют на спиральные, центровочные и специальные. Наиболее распространенный для сверления и рассверливания инструмент — спиральное сверло (см. рис. 1.1, а, б), состоящее из рабочей части lраб, шейки , хвостовика и лапки lл.

В рабочей части lраб различают режущую и калибрующую-направляющую части с винтовыми канавками. Шейка соединяет рабочую часть сверла с хвостовиком. Хвостовик необходим для установки сверла в шпинделе станка. Лапка служит упором при выбивании сверла из отверстия шпинделя.

Элементы рабочей части и геометрические параметры спирального сверла показаны на рис. 1.1, б. Сверло имеет две главные режущие кромки 1, образованные пересечением передних 8 и главных задних 2 поверхностей лезвия и выполняющие основную работу резания; поперечную режущую кромку 9 (перемычку) и две вспомогательные режущие кромки 5. На калибрующей (направляющей, с обратной конусностью) части сверла вдоль винтовой канавки расположены две узкие ленточки 4 (вспомогательные задние поверхности), обеспечивающие направление сверла при резании и требуемую точность и качество обрабатываемой поверхности.

Зенкеры по виду обрабатываемых отверстий подразделяют на спиральные цилиндрические (см. рис. 1.1, в, г), конические (рис. 1.3, а) и торцовые (рис. 9.3, б). Зенкеры бывают цельные с коническим хвостовиком (см. рис. 1.1, в, г) и насадные (см. рис. 1.3, б).

Спиральный цилиндрический зенкер отличается от спирального сверла главным образом большим количеством зубьев (три-четыре) и отсутствием перемычки.

Зенкерование, как было указано ранее, применяется при обработке ранее полученных отверстий и торцовых поверхностей.

Развертками, как было указано в подразд. 1.1, окончательно обрабатывают отверстия. По форме обрабатываемого отверстия различают цилиндрические (рис. 1.1, д и 1.3, в) и конические (рис. 1.3, г) развертки. Развертки имеют 6. 12 главных режущих кромок , расположенных на режущей части с направляющим конусом , вспомогательные режущие кромки расположены на калибрующей части 7К.

сверление, рассверливание, зенкерование, развертывание, отверстие

По конструкции закрепления развертки подразделяют на хвостовые (см. рис. 1.1, д и 1.3, в, г) и насадные (рис. 1.3, д, на котором показана машинная насадная развертка с механическим креплением режущих пластинок в ее корпусе).

Метчики применяют для нарезания внутренних резьб. Метчик (рис. 9.3, е) представляет собой винт с прорезанными прямыми или винтовыми канавками, образующими режущие кромки. Рабочая часть метчика имеет режущую и калибрующую части. Профиль резьбы метчика должен соответствовать профилю нарезаемой резьбы. Метчик закрепляют в специальном патроне.

У зенкеров, разверток, метчиков, как и у сверл, режущие части выполняют основную работу резания. Калибрующие части служат для направления инструмента в отверстии и обеспечивают необходимую точность и качество обрабатываемой поверхности.

В процессе работы режущие элементы осевых инструментов подвергаются истиранию по передней, главной задней и вспомогательной поверхностям с одновременным тепловым воздействием. Это приводит к износу поверхностей инструментов (рис. 9.4, а, б), контактирующих с заготовкой и срезаемым слоем. Интенсивность изнашивания площадок сверл, зенкеров и разверток зависит от режима резания, материала режущей части и заготовки, от других условий обработки.

Изнашивание быстрорежущего сверла (см. рис. 9.4, а) протекает по передней 1, главной 2 и вспомогательной 3 задним поверхностям. Наиболее интенсивное изнашивание происходит по вспомогательным задним поверхностям 3 (ленточкам), имеющим значительную поверхность трения, и по задней поверхности в районе сопряжения главной и вспомогательной режущих кромок. По величине ii3, характеризующей этот износ, судят о возможности дальнейшей эксплуатации сверла.

Допустимый износ по задней поверхности h3 для разных случаев сверления приведен в справочной литературе. Например, для быстрорежущего сверла диаметром 20 мм h3 = 0,8 мм. Несоблюдение рекомендаций по допустимой величине износа сокращает срок службы инструмента: при большом износе на переточках инструмента приходится снимать мното материала, а при малом износе — делать много переточек.

Изнашивание зенкеров и разверток происходит по ленточке и задней поверхности заборной части, образуя наиболее уязвимое место инструмента (см. рис. 1.4, б). Допустимый износ устанавливается по величине h3. Для быстрорежущих зенкеров диаметром D= 10. 50 мм эта величина лежит в пределах 1. 2 мм, для твердосплавных 0,4. 0,6 мм. Износ быстрорежущих разверток не должен превышать 0,6. 0,8 мм.

1 — передняя поверхность; 2, 3, 4 — главная, вспомогательная, дополнительная задние поверхности; K1, К2 — кулачки; P1t,Р2, Р3 — силы зажима сверла в приспособлении; DSnp — продольная подача; DSкp — круговая возвратно-вращательная подача сверла; DSy1, DSy2 — установочные вращательные движения кулачков К1 и К2; Ds2p и Ds2b — соответственно рабочий и вспомогательный ходы поперечной подачи сверла; h3 — ширина износа

сверление, рассверливание, зенкерование, развертывание, отверстие

При достижении установленной величины износа осевые инструменты перетачивают для восстановления их режущих свойств. Переточку сверл, зенкеров и разверток осуществляют по главным задним поверхностям и в некоторых случаях по передней поверхности. Для заточки спиральных сверл применяют специальные заточные станки. Некоторые схемы заточки сверл приведены на рис. 9.4, в, г, д.

ТЕХНОЛОГИЧЕСКАЯ ОСНАСТКА СВЕРЛИЛЬНЫХ СТАНКОВ

При обработке на сверлильных станках применяют различные приспособления для установки и укрепления заготовок на столах и инструментов на шпинделях станков.

Заготовки устанавливают на столе станка, снабженном Т-образными пазами, следующими способами: закрепляя прижимными планками или в машинных тисках; на угольник со столом, который может поворачиваться на необходимый угол и у которого есть Т-образные пазы, позволяющие закрепить на этом столе приспособление с обрабатываемой заготовкой; в трех- или четырехкулачковых патронах (цилиндрические заготовки); на призму с закреплением заготовки струбцинами; с помощью кондукторов, снабженных направляющими втулками, которые обеспечивают определенное положение режущего инструмента относительно обрабатываемой заготовки, закрепляемой в корпусе кондуктора. Необходимость в разметке при использовании кондукторов отпадает.

Режущий инструмент в шпинделе сверлильного станка закрепляют с помощью вспомогательного инструмента: переходных втулок сверлильных патронов и оправок. Крепление инструмента может быть жестким или плавающим. Жесткое крепление инструмента применяют при обработке неточных отверстий.

При развертывании отверстий с точностью по 7-му квалитету с направлением инструмента по кондукторным втулкам или по ранее обработанному отверстию необходимо применять самоустанавливающиеся патроны (качающиеся и плавающие), которые позволяют устранить деформации инструмента и шпинделя и свободно ориентировать инструмент относительно кондукторных втулок или обрабатываемого отверстия.

Режущие инструменты с коническим хвостовиком закрепляют непосредственно в коническом отверстии шпинделя сверлильного станка. Если размер конуса хвостовика инструмента меньше раз­мера конического отверстия шпинделя, то применяют переходные конические втулки. Инструменты с цилиндрическим хвостовиком закрепляют в двух-, трехкулачковых или цанговых патронах.

СХЕМЫ ОБРАБОТКИ ЗАГОТОВОК НА СВЕРЛИЛЬНЫХ СТАНКАХ

На сверлильных станках выполняют сверление, рассверливание, зенкерование, развертывание, цекование, зенкование, нарезание резьбы и обработку сложных отверстий.

Схемы обработки заготовок, режущий инструмент и возможности сверления, рассверливания, зенкерования, развертывания приведены в подразд. 1.1 и 1.2.

Добавим, что сверление и рассверливание — это грубая обработка.

В зависимости от требуемой точности и величины партии обрабатываемых заготовок отверстия сверлят в кондукторе или по разметке.

Диаметр отверстия под рассверливание выбирают так, чтобы поперечная режущая кромка в работе не участвовала. В этом случае осевая сила уменьшается.

Зенкерование относится к получистовому виду обработки поверхностей отверстий, при этом методе снимают небольшие припуски 0,5. 3 мм. Зенкер — более жесткий инструмент, чем сверло, и поэтому он исправляет искривление оси обрабатываемого отверстия после увода сверла, повышает точность обработки и качество поверхности цилиндрического отверстия.

Развертывание — чистовой метод обработки отверстий. Под развертывание оставляют небольшой припуск на сторону 0,05. 0,5 мм, и поэтому развертка не может исправить искривление оси отверстия, но увеличивает точность диаметрального размера и качество обработанной поверхности.

Применяют однократное, двухкратное и трехкратное развертывания. Однократное развертывание осуществляют черновой разверткой, оно обеспечивает точность по 8. 9-му квалитетам; двухкратное развертывание осуществляют черновой и получистовой развертками, точность — по 7-му квалитету; трехкратное развертывание осуществляют черновой, получистовой и чистовой развертками, точность — до 6-го квалитета.

Цекование — обработка торцовой поверхности отверстия торцовым зенкером для достижения перпендикулярности плоской торцовой поверхности к оси (рис. 1.5, а).

а — цекование; б, в — зенкование; г — нарезание резьбы; д — комбинированная обработка;. неподвижная опора;

Дата добавления: 2015-08-21 ; просмотров: 18026 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Сверление, рассверливание, зенкерование, развертывание

Сверление применяют для обработки глухих и сквозных отверстий цилиндрических, конических и многогранных внутренних поверхностей.

Сверление и рассверливание обеспечивают точность обработки отверстий по 10-11-му квалитету и качество поверхности Rz 80…20 мкм (при обработке отверстий малого диаметра в цветных металлах и сплавах до Ra 2,5 мкм). Для получения более точных отверстий применяют зенкерование и развертывание.

Зенкерование, как и рассверливание, применяют для увеличения диаметра ранее полученного цилиндрического отверстия, а также для получения конических (коническими зенкерами) и плоских (торцами зенкеров) поверхностей. При зенкеровании после сверления получают точность по 9-10. му квалитетам, качество поверхности до Ra 2,5 мкм.

Развертывание применяют для окончательной (чистовой0 обработки в основном цилиндрических отверстий, реже для чистовой обработки конических и торцовых поверхностей. Точность по 6-8 – му квалитетам. Качество поверхности Ra 2,5… 0,32 мкм.

Отверстия обрабатывают различными режущими инструментами: сверлами, зенкерами, зенковками, развертками, метчиками. Все эти инструменты – осевые.

Обработка этими инструментами осуществляется при главном вращательном движении инструмента или заготовки и при одном движении подачи (чаще инструмента) вдоль оси инструмента или обрабатываемой поверхности.

Свёрла предназначены для сверления и рассверливания отверстий диаметром до 80 мм. Различают следующие типы сверл: цилиндрические с винтовой канавкой и коническим хвостовиком (стандартные и удлиненные); сверла для рассверливания чугуна с пластинкой из твердого сплава; перовые для глубоких отверстий; полые для кольцевого сверления отверстий диаметром более 60 мм.

Зенкеры предназначены для окончательной обработки просверленных отверстий по 11, 12-13 квалитетам или для обработки гнезд с плоским дном под головки винтов и болтов. Зенкеры бывают следующих типов: со спиральным зубом, коническим и цилиндрическим хвостовиком (быстрорежущие или с пластинками твердого сплава); со спиральным зубом (насадные и цельные); насадные, со вставными ножами, быстрорежущие; насадные, оснащенные твердым сплавом; для цилиндрических углублений (цельные и съемные); для зачистки торцовых поверхностей (пластинчатые или со вставными ножами); зенковки обратные со штифтовым замком, оснащенные пластинками твердого сплава; специальные для борштанг.

READ  Сверление радиальных отверстий на вертикально сверлильном станке

Развертки предназначены для чистовой обработки отверстий с целью получения правильной формы и точных размеров по 6-7 и 8-9 квалитетам и шероховатости поверхности по 7-8 классам. Типы разверток следующие: цельные с цилиндрическим или коническим хвостовиком; насадные для сквозных и глухих отверстий; конические; специальные для оправок и борштанг.

Метчики применяют для нарезания резьбы в отверстиях. Метчиками представляет собой винт с прорезанными прямыми или винтовыми канавками, образующими режущие кромки. Профиль резьбы должен соответствовать профилю нарезаемой резьбы.

Сверла бывают разных типов: перовые, спиральные, пушечные, кольцевые и комбинированные специальные. Сверла изготовляют из быстрорежущих, легированных и углеродистых сталей, а также их оснащают пластинками из твердых сплавов. Наибольшее распространение в промышленности получили спиральные сверла. Спиральные сверла изготовляют диаметром от 0,1 до 80 мм.

Спиральное сверло состоит из рабочей части, шейки, хвостовика для крепления сверла в шпинделе станка и лапки, служащей упором при выбивании сверла из гнезда шпинделя. Рабочая часть разделяется на режущую и направляющую. Режущая часть состоит из двух зубьев (перьев), образованных двумя канавками для отвода стружки; перемычки (сердцевины). средней части сверла, соединяющей оба зуба (пера); Двух передних поверхностей, по которым сбегает стружка, и двух задних поверхностей; двух ленточек для направления сверла и уменьшения его трения о стенки отверстия; двух главных режущих кромок, образованных пересечением передних и задних поверхностей и выполняющих основную работу резания; поперечной кромки (перемычки), образованной пересечением обеих задних поверхностей. На наружной поверхности сверла между краем ленточки и канавкой расположена идущая по винтовой косильной лески несколько углубленная часть — спинка зуба.

1 Конструктивные элементы 2 Работа сверла

спирального сверла 1. сверло, 2. стружка, 3. деталь.

К геометрическим параметрам режущей части сверла относятся: угол при вершине сверла, угол наклона винтовой канавки, передний и задний углы, угол наклона поперечной кромки (перемычки).

3 Геометрия спирального сверла

Угол при вершине сверла 2φ расположен между главными режущими кромками. Он оказывает большое влияние на работу сверла. Величина этого угла выбирается в зависимости от твердости обрабатываемого материала (от 80 до 140°): для сталей, чугунов и твердых бронз 2φ = 116. 118°; для латуней и мягких бронз 2φ = 130°; для легких сплавов, силумина, электрона и баббита 2φ = 140°; для красной меди 2φ = 125°; для эбонита и целлулоида 2φ = 80. 90°.

Чтобы повысить стойкость сверл диаметром от 12 мм и более, применяют двойную заточку сверл; при этом главные режущие кромки имеют форму не прямой, как при обычной заточке, а ломаной косильной лески. Основной угол 2φ = 116. 118° (для сталей и чугунов), а второй угол 2φ = 70.75°.

Угол наклона винтовой канавки обозначается греческой буквой Omega (ω). С увеличением этого угла процесс резания протекает легче и улучшается выход стружки. Величина ω зависит от диаметра сверла. Для сверл диаметром 0,25. 9,9 мм ω = 18-28°, для сверл диаметром 10 мм и более ω = 30°.

Если рассечь спиральное сверло плоскостью, перпендикулярной главной режущей кромке, то мы увидим передний угол γ (гамма). Передний угол γ в разных точках режущей кромки имеет разную величину: он больше у периферии сверла и заметно меньше у его оси. Так, если у наружного диаметра передний угол γ = 25. 30°, то у перемычки он близок к 0°. Непостоянство величины переднего угла относится к недостаткам спирального сверла и является одной из причин неравномерного и быстрого его износа.

Задний угол сверла α (альфа) предусмотрен для уменьшения трения задней поверхности о поверхность резания. Этот угол рассматривается в плоскости параллельной оси сверла. Величина заднего угла также изменяется по направлению от периферии к центру сверла: у периферии он равен 8. 12°, а у оси α = 20. 26°.

Угол наклона поперечной кромки (пси) для сверл диаметром 1—12 мм от 47 до 50°. а для сверл диаметром более 12 мм = 55°.

Зенкером обрабатывают отверстия, предварительно штампованные, литые или просверленные. Припуск под зенкерование (после сверления) составляет 0,5-3 мм на сторону. Зенкер выбирают в зависимости от обрабатываемого материала, вида (сквозное, ступенчатое, глухое) и диаметра отверстия и заданной точности обработки. Зенкер имеет три и более режущие кромки, поэтому при зенкеровании снимается более тонкая стружка и получаются более точные отверстия, чем при сверлении; он прочнее сверла, благодаря чему подача при зенкеровании в 2,5-3 раза превышает подачу при сверлении. Зенкерование может быть как предварительной (перед развертыванием), так и окончательной операцией. Кроме обработки отверстий зенкеры применяются для обработки торцовых поверхностей. Для повышения точности зенкерования (особенно при обработке литых или штампованных глубоких отверстий) рекомендуется предварительно расточить (резцом) отверстие до диаметра, равного диаметру зенкера на глубину, примерно равную половине длины рабочей части зенкера. Для обработки высокопрочных материалов (sв750 МПа) применяют зенкеры, оснащенные пластинами из твердого сплава. Скорость резания для зенкеров из быстрорежущей стали такая же, как и для сверл. Скорость резания твердосплавных зенкеров в 2-3 раза больше, чем зенкеров из быстрорежущей стали. При обработке высокопрочных материалов и литья по корке скорость резания твердосплавных зенкеров следует уменьшать на 20-30%.

Зенкер имеет большее число режущих кромок (три или четыре), чем спиральное сверло, и обеспечивает большую чистоту обработки отверстия.

Зенкование — это обработка выходной части отверстия (снятие заусенцев) для получения конических или цилиндрических углублений под потайные головки заклепок и винтов. Зенкование выполняют конической или цилиндрической зенковкой. Операции зенкования производят на сверлильном станке, как и сверление отверстий на требуемую глубину.

5 а. зенкер, б, в коническая 6 Работа зенкера:

и цилиндрическая зенковки 1-деталь, 2-зенкер

Главный угол в плане режущих кромок в большинстве случаев равен φ = 60°. У быстрорежущих зенкеров, работающих по стали, и всех твердосплавных зенкеров рекомендуется создавать переходную кромку с углом φі = 30° и длиной 0,3—1 мм.

Геометрические параметры режущей части задаются обычно в сечении плоскостью, перпендикулярной к проекции режущей кромки на осевую плоскость зенкера. Передний угол выбирается в зависимости от свойств обрабатываемого материала: для стали 8—12°, чугуна 6—10°, легких и цветных металлов 25—30°. Задний угол принимают равным 8—10°.

Для правильной работы зенкера необходимо, чтобы биение главных кромок не превышало 0,05—0,06 мм.

Угол наклона канавок к оси инструмента принимают в пределах ω = 10—20°. Зенкеры диаметром 10—32 мм делают хвостовыми, а диаметром 25—80 мм — насадными.

Применение зенкеров, оснащенных пластинками из твердого сплава, позволяет значительно повысить производительность обработки. Пластинки твердого сплава могут напаиваться непосредственно в корпус зенкера или на вставной нож. Применение сборных конструкций дает возможность замены зубьев в случае их поломки, восстановления и регулирования размера зенкера и многократного использования корпуса. Во избежание выкрашивания твердого сплава на передней поверхности твердого сплава зачастую вводится отрицательная фаска (γ = —10°; f = 0,2—0,3 мм).

Задняя поверхность режущей и калибрующей части зенкера, оснащенного твердым сплавом, выполняется под двумя углами.

Для получения отверстий высокой точности и качества обрабатываемой поверхности применяют развертывание. Развертка имеет значительно больше режущих кромок, чем зенкер, поэтому при развертывании снимается более тонкая стружка и получаются более точные отверстия, чем при зенкеровании. Отверстия диаметром до 10 мм развертывают непосредственно после сверления. Перед развертыванием отверстий большего диаметра их предварительно обрабатывают, а торец подрезают. Припуск под развертывание t=0,15-0,5 мм для черновых разверток и 0,05-0,25 мм для чистовых разверток. При работе чистовыми развертками на токарных и токарно-револьверных станках применяют качающиеся оправки, которые компенсируют несовпадение оси отверстия с осью развертки. Для того чтобы обеспечить высокое качество обработки, сверление, зенкерование (или растачивание) и развертывание отверстия производят за одну установку заготовки в патроне станка. Подача при развертывании стальных деталей 0,5-2 мм/об, а при развертывании чугунных деталей 1-4 мм/об. Скорость резания при развертывании 6-16 м/мин. Чем больше диаметр обрабатываемого отверстия, тем меньше скорость резания при одинаковой подаче, а при увеличении подачи скорость резания снижают.

Развертки бывают цилиндрические и конические. Конические развертки предназначены для развертывания конусных отверстий.

7 Развертки: цилиндрическая ручная,

На рабочей части развертки имеется от 6 до 14 нарезанных зубьев, вдоль которых расположены канавки; зубья служат для образования режущих кромок и отвода наружу снимаемой стружки. Нижняя конусная часть развертки снимает стружку, а верхняя — калибрующая— направляет развертку и окончательно калибрует отверстия.

Для более чистой обработки поверхности отверстий и охлаждения инструмента при развертывании просверленные отверстия в стали смазывают минеральным маслом, в меди — эмульсией, в алюминии — скипидаром, а в латуни и бронзе отверстия развертывают без смазывания.

Развертки бывают ручными или машинными, хвостовыми или насадными, цельными или сборными, из стали (легированной или быстрорежущей) или с пластинками из твердого сплава.

Ручные развертки, используемые при слесарных работах, отличаются малым углом в плане φ = 1—2 и большой длиной режущей части. Эти развертки изготавливают обычно из стали 9ХС.

Машинные развертки используются при работе на токарных, револьверных и сверлильных станках. Угол в плане на режущей части равен φ = 15° для вязких металлов и φ = 5° для хрупких металлов. На переднем конце режущей части снимается заходная фаска под углом 45°, для направления развертки в отверстии, предохранения зубьев от выкрашивания в момент входа в отверстие и снятия завышенного припуска.

Калибрующая часть развертки служит для калибрования и зачистки отверстия и направления развертки при обработке. Зубья на калибрующей части имеют цилиндрическую ленточку, требующую очень тщательной доводки.

Для предупреждения огранки отверстия зубья развертки имеют неравномерную разбивку, поэтому заточка разверток в делительных приспособлениях невозможна.

Передний угол γ у разверток обычно равен нулю и только у черновых разверток или при обработке особо вязких материалов γ = 5—10°. Задний угол на режущей части а = 8°. Развертки, оснащенные твердым сплавом, затачиваются по задней поверхности под двумя задними углами α1 = 8° и α2 = 15°.

Метчики — инструмент, который применяется для нарезания внутренних резьб.

Ручные метчики служат для нарезания резьбы вручную; используются в виде комплекта. Существуют комплекты из двух штук (черновой и чистовой метчики) и из трех штук (черновой, промежуточный и чистовой метчики).

Гаечные метчики (короткие, длинные и станочные) применяются для нарезания сквозных резьб.

Машинные метчики применяются на сверлильных и агрегатных станках, на станках-автоматах, для нарезания резьбы в деталях машин.

Для нарезания резьб большого диаметра применяются регулируемые (сборные) метчики.

Элементы метчика. Метчик состоит из следующих частей: рабочая часть и хвостовик; рабочая часть разделяется на заборную часть и калибровочную часть; хвостовик заканчивается квадратом, передающим крутящий момент метчику. Канавки метчика служат для образования передних и задних поверхностей режущих перьев и для отвода стружки.

Заборная часть метчика срезает припуск на заготовке, а калибрующая часть предназначена для центрирования и направления метчика в нарезаемом отверстии и для зачистки нарезаемой резьбы. Метчик имеет передние, задние и профильные поверхности и главные и профильные режущие лезвия.

Геометрические параметры метчика включают: передний угол γ, который берется от 0º до 5º при обработке чугуна и бронзы, а для мягкой стали γ доходит до 15º; задний угол α, который колеблется от 6 до 12º; угол заборной части φ, определяющийся вычислением, он зависит от высоты нарезаемой резьбы и выбранной длины заборной части; угол обратного конуса φ, необходимый для предотвращения защемления метчика в нарезаемой резьбе; понижение диаметра дается на 0,05 ÷ 0,1 мм на 100 мм длины метчика; угол наклона режущего лезвия λ затачивается на длине заборной части метчика для направления стружки вперед по движению инструмента; величина λ берется в пределах от 7 до 10º.

Дата добавления: 2017-01-26 ; просмотров: 12938 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ